Maximal Independent Sets in Clique-free Graphs

Sam Spiro, UC San Diego.

Joint with Xiaoyu He and Jiaxi Nie

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup \{v\}$ is not for any $v \notin I$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup \{v\}$ is not for any $v \notin I$.

There has been a lot of work on algorithmic aspects of MIS's, in part due to application in social network analysis, bioinformatics, information retrieval, computer vision,...

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup \{v\}$ is not for any $v \notin I$.

There has been a lot of work on algorithmic aspects of MIS's, in part due to application in social network analysis, bioinformatics, information retrieval, computer vision,...

Question

Given a family of graphs \mathcal{G} , what's the maximum number of MIS's that a graph $\mathcal{G} \in \mathcal{G}$ can have?

Let m(n) denote the maximum number of MIS's in an *n*-vertex graph.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let m(n) denote the maximum number of MIS's in an *n*-vertex graph.

Theorem (Miller, Muller 1960; Moon, Moser 1965)

If $n \ge 2$, then

$$m(n) = \begin{cases} 3^{n/3} & n \equiv 0 \mod 3, \\ 4 \cdot 3^{(n-4)/3} & n \equiv 1 \mod 3, \\ 2 \cdot 3^{(n-2)/3} & n \equiv 2 \mod 3. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let m(n) denote the maximum number of MIS's in an *n*-vertex graph.

Theorem (Miller, Muller 1960; Moon, Moser 1965)

If $n \ge 2$, then

$$m(n) = \begin{cases} 3^{n/3} & n \equiv 0 \mod 3, \\ 4 \cdot 3^{(n-4)/3} & n \equiv 1 \mod 3, \\ 2 \cdot 3^{(n-2)/3} & n \equiv 2 \mod 3. \end{cases}$$

What happens if we consider graphs which are "far" from this extremal construction?

Let $m_3(n)$ denote the maximum number of MIS's in an *n*-vertex triangle-free graph.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $m_3(n)$ denote the maximum number of MIS's in an *n*-vertex triangle-free graph.

Theorem (Hujter, Tuza 1993)

If $n \geq 4$, then

$$m_3(n) = \begin{cases} 2^{n/2} & n \equiv 0 \mod 2, \\ 5 \cdot 2^{(n-5)/2} & n \equiv 1 \mod 2. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let $m_3(n)$ denote the maximum number of MIS's in an *n*-vertex triangle-free graph.

Theorem (Hujter, Tuza 1993)

If $n \ge 4$, then

$$m_3(n) = \begin{cases} 2^{n/2} & n \equiv 0 \mod 2, \\ 5 \cdot 2^{(n-5)/2} & n \equiv 1 \mod 2. \end{cases}$$

This theorem (and variants thereof) have found applications in counting the number of maximal triangle-free graphs on *n*-vertices (Balogh-Petříčková) as well as to counting the number of maximal sum-free subsets (Balogh-Liu-Sharifzadeh-Treglown).

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let m(n, k) denote the maximum number of k-MIS's that an n-vertex graph can have.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let m(n, k) denote the maximum number of k-MIS's that an n-vertex graph can have.

Theorem (Nielsen 2002)

If $s \in \{0, 1, \dots, k-1\}$ with $n \equiv s \mod k$, then

$$m(n,k) = \lfloor n/k \rfloor^{k-s} \lceil n/k \rceil^s.$$

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let m(n, k) denote the maximum number of k-MIS's that an n-vertex graph can have.

Theorem (Nielsen 2002)

If $s \in \{0, 1, \dots, k-1\}$ with $n \equiv s \mod k$, then

$$m(n,k) = \lfloor n/k \rfloor^{k-s} \lceil n/k \rceil^s$$
.

Again one can ask how this function changes if we consider graphs which are "far" from the disjoint union of cliques.

Define $m_t(n, k)$ to be the maximum number of k-MIS's that an *n*-vertex K_t -free graph can have.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define $m_t(n, k)$ to be the maximum number of k-MIS's that an *n*-vertex K_t -free graph can have. Given the previous constructions, we might expect that the maximizer for $m_t(n, k)$ will consist of the disjoint union of some "nice" graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define $m_t(n, k)$ to be the maximum number of k-MIS's that an *n*-vertex K_t -free graph can have. Given the previous constructions, we might expect that the maximizer for $m_t(n, k)$ will consist of the disjoint union of some "nice" graphs. One natural construction that comes up is $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ minus a maximum matching, which we will refer to as a *comatching*.

Define $m_t(n, k)$ to be the maximum number of k-MIS's that an *n*-vertex K_t -free graph can have. Given the previous constructions, we might expect that the maximizer for $m_t(n, k)$ will consist of the disjoint union of some "nice" graphs. One natural construction that comes up is $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ minus a maximum matching, which we will refer to as a *comatching*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note that the comatching has (at least) |n/2| 2-MIS's.

$$m_3(n,2) = \Omega(n)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $m_3(n,2) = \Omega(n)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$m_3(n,2) = \Omega(n)$$

$$m_3(n,3)=\Omega(n)$$

・ロト ・母ト ・ヨト ・ヨー うへぐ

More generally this shows $m_t(n, k) = \Omega(n^{\lfloor k/2 \rfloor})$ for fixed k.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Reasonable Question

Is it the case that for all k, t we have

$$m_t(n,k) = O_{k,t}(n^{\lfloor k/2 \rfloor}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reasonable Question

Is it the case that for all k, t we have

$$m_t(n,k) = O_{k,t}(n^{\lfloor k/2 \rfloor}).$$

Theorem (He, Nie, S. 2021)

For $n \ge 8$ we have

$$m_3(n,2) = \lfloor n/2 \rfloor,$$

and the unique graph achieving this bound is a comatching of order *n*.

Reasonable Question

Is it the case that for all k, t we have

$$m_t(n,k) = O_{k,t}(n^{\lfloor k/2 \rfloor}).$$

Theorem (He, Nie, S. 2021)

For $n \ge 8$ we have

$$m_3(n,2) = \lfloor n/2 \rfloor,$$

and the unique graph achieving this bound is a comatching of order n. Moreover, we have

$$m_3(n,3) = \Theta(n),$$

$$m_3(n,4) = \Theta(n^2).$$

Proposition

For all $t \ge 4$, $m_t(n,3) \ge n^{2-o(1)}$.

Proposition

For all $t \geq 4$,

$$m_t(n,3) \geq n^{2-o(1)}.$$

A famous result of Ruzsa and Szemerédi says that there exists an *n*-vertex tripartite graph *G* on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Proposition

For all $t \geq 4$,

$$m_t(n,3) \geq n^{2-o(1)}.$$

A famous result of Ruzsa and Szemerédi says that there exists an *n*-vertex tripartite graph G on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle. Let G' be the "tripartite complement" of G, i.e. take the complement \overline{G} and then delete all the edges within each of the parts U, V, W.

(日)

3

Claim: every triangle $T = \{u, v, w\}$ in G is a 3-MIS in G'.

Claim: every triangle $T = \{u, v, w\}$ in G is a 3-MIS in G'. It's an independent set since it's the (tripartite) complement of a triangle.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Claim: every triangle $T = \{u, v, w\}$ in G is a 3-MIS in G'. It's an independent set since it's the (tripartite) complement of a triangle. If $\{u, v, w, w'\}$ is an independent set in G', then $\{u, v, w'\}$ is a triangle in G.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Claim: every triangle $T = \{u, v, w\}$ in G is a 3-MIS in G'. It's an independent set since it's the (tripartite) complement of a triangle. If $\{u, v, w, w'\}$ is an independent set in G', then $\{u, v, w'\}$ is a triangle in G. Because there is a unique triangle in G containing uv, we must have w' = w, i.e. this is maximal.

Claim: every triangle $T = \{u, v, w\}$ in *G* is a 3-MIS in *G'*. It's an independent set since it's the (tripartite) complement of a triangle. If $\{u, v, w, w'\}$ is an independent set in *G'*, then $\{u, v, w'\}$ is a triangle in *G*. Because there is a unique triangle in *G* containing uv, we must have w' = w, i.e. this is maximal. Since *G* contains $n^{2-o(1)}$ triangles, and since the tripartite graph *G'* is K_t -free for $t \ge 4$, we conclude the result.

Mimicking this proof strategy, we can improve our bounds if there exists k-partite *n*-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_k .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mimicking this proof strategy, we can improve our bounds if there exists k-partite *n*-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_k .

Theorem (Gowers, B. Janzer 2020)

For all $1 \le \ell < k$ there exist n-vertex graphs with $n^{\ell-o(1)}$ copies of K_{ℓ} such that every K_{ℓ} is contained in at most one K_k .

Mimicking this proof strategy, we can improve our bounds if there exists k-partite *n*-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_k .

Theorem (Gowers, B. Janzer 2020)

For all $1 \le \ell < k$ there exist n-vertex graphs with $n^{\ell-o(1)}$ copies of K_{ℓ} such that every K_{ℓ} is contained in at most one K_{k} .

Taking $\ell = k - 1$ gives the following:

Proposition

For k < t we have

$$m_t(n,k) \geq n^{k-1-o(1)}.$$
By taking disjoint unions of these constructions (like we did with K_1 and comatchings) gives the following:

Theorem (He, Nie, S. 2021)

For all fixed k, t, we have

$$m_t(n,k) \geq n^{\left\lfloor \frac{(t-2)k}{t-1} \right\rfloor - o(1)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

By taking disjoint unions of these constructions (like we did with K_1 and comatchings) gives the following:

Theorem (He, Nie, S. 2021)

For all fixed k, t, we have

$$m_t(n,k) \geq n^{\left\lfloor \frac{(t-2)k}{t-1} \right\rfloor - o(1)}$$

Reasonable Question

Is this bound essentially tight? In particular, for triangle-free graphs do we have

$$m_3(n,k) = \Theta(n^{\lfloor k/2 \rfloor}).$$

Better Construction: Blowups

Consider a C_k with edges e_1, \ldots, e_k and vertices $v_i \in e_i \cap e_{i+1}$ and define $G_n(C_k, \frac{1}{2})$ as follows. Let V_i consist of the set of functions $f : \{e_i, e_{i+1}\} \rightarrow [n^{1/2}]$. We make $f \in V_i$ adjacent to $g \in V_j$ if and only if there is an edge $e \in E(C_k)$ with $v_i, v_j \in e$ (i.e. if $i = j \pm 1$) and such that $f(e) \neq g(e)$.

Better Construction: Blowups

Lemma

For each function $F : E(C_k) \to [n^{1/2}]$, the set I of $f \in V(G_n(C_k, \frac{1}{2}))$ which agree with F forms a k-MIS.

These blowups have kn vertices, have at least $n^{k/2}$ k-MIS's (i.e. functions $F : E(C_k) \rightarrow [n^{1/2}]$), and they are triangle-free for k > 3.

These blowups have kn vertices, have at least $n^{k/2}$ k-MIS's (i.e. functions $F : E(C_k) \rightarrow [n^{1/2}]$), and they are triangle-free for k > 3.

Theorem (He, Nie, S. 2021)

For all $k \geq 4$,

$$m_3(n,k) = \Omega(n^{k/2}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These blowups have kn vertices, have at least $n^{k/2}$ k-MIS's (i.e. functions $F : E(C_k) \to [n^{1/2}]$), and they are triangle-free for k > 3.

Theorem (He, Nie, S. 2021)

For all $k \geq 4$,

$$m_3(n,k) = \Omega(n^{k/2}).$$

One can generalize this blowup construction in two ways.

For example, the previous construction used $H = C_k$ and $M \equiv \frac{1}{2}$.

For example, the previous construction used $H = C_k$ and $M \equiv \frac{1}{2}$. For $H = C_{2k}$, taking M to be a perfect matching gives a disjoint union of comatchings.

For example, the previous construction used $H = C_k$ and $M \equiv \frac{1}{2}$. For $H = C_{2k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

For example, the previous construction used $H = C_k$ and $M \equiv \frac{1}{2}$. For $H = C_{2k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

If *H* is a *k*-vertex triangle-free graph and *M* has size k/2, then $G_n(H, M)$ will have kn vertices, $\Omega(n^{k/2})$ distinct *k*-MIS's, and be triangle-free.

For example, the previous construction used $H = C_k$ and $M \equiv \frac{1}{2}$. For $H = C_{2k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

If *H* is a *k*-vertex triangle-free graph and *M* has size k/2, then $G_n(H, M)$ will have *kn* vertices, $\Omega(n^{k/2})$ distinct *k*-MIS's, and be triangle-free. Thus if this bound is tight, there are many different constructions achieving it.

One can also generalize this construction by taking "blowups" of hypergraphs H.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

One can also generalize this construction by taking "blowups" of hypergraphs H. Essentially in this setting one replaces hyperedges of H by "interwoven" copies of the Ruzsa-Szemerédi and Gowers-Janzer constructions instead of "interwoven" comatchings.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

One can also generalize this construction by taking "blowups" of hypergraphs H. Essentially in this setting one replaces hyperedges of H by "interwoven" copies of the Ruzsa-Szemerédi and Gowers-Janzer constructions instead of "interwoven" comatchings. With this construction and H the tight cycle, one can prove the following:

Theorem (He, Nie, S. 2021)

 $t \geq 3$ and $k \geq 2(t-1)$, then

$$m_t(n,k) \ge n^{\frac{(t-2)k}{t-1}-o(1)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note that this drops the floor from the previous bound.

We think these lower bounds are essentially best possible:

Conjecture (He, Nie, S.; S.)

For all fixed k, t, we have

$$m_t(n,k) = O(n^{\frac{(t-2)k}{t-1}}).$$

Moreover, for k < 2(t-1) we have

$$m_t(n,k) = O(n^{\left\lfloor \frac{(t-2)k}{t-1} \right\rfloor}).$$

Proposition

For all k < t we have

$$m_t(n,k) = O(n^{\left\lfloor \frac{(t-2)k}{t-1} \right\rfloor}) = O(n^{k-1}).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proposition

For all k < t we have

$$m_t(n,k) = O(n^{\left\lfloor \frac{(t-2)k}{t-1} \right\rfloor}) = O(n^{k-1}).$$

It's easy to prove $m_t(n, 1) \leq t$, and then one can inductively use that (roughly) $m_t(n, k) \leq n \cdot m_t(n, k-1)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (He, Nie, S. 2021)

For all $k \leq 4$, we have

$$m_3(n,k)=O(n^{\lfloor k/2\rfloor}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (He, Nie, S. 2021)

For all $k \leq 4$, we have

$$m_3(n,k) = O(n^{\lfloor k/2 \rfloor}).$$

The case $k \le 2$ follows from the previous proposition, and the k = 4 case will follow from the k = 3 case since (roughly) $m_3(n, 4) \le n \cdot m_3(n, 3)$. Thus it remains to prove this for k = 3.

If G is a k-partite graph, let t(G, k) denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If G is a k-partite graph, let t(G, k) denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

Lemma

If G is a triangle-free graph on n vertices, then G has an induced k-partite subgraph $G' \subseteq G$ satisfying

$$t(G',k) \geq (4k)^{-k} m(G,k),$$

where m(H, k) denotes the number of k-MIS's of H.

If G is a k-partite graph, let t(G, k) denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

Lemma

If G is a triangle-free graph on n vertices, then G has an induced k-partite subgraph $G' \subseteq G$ satisfying

$$t(G',k) \geq (4k)^{-k} m(G,k),$$

where m(H, k) denotes the number of k-MIS's of H.

That is, to determine $m_3(n, k)$ it suffices to restrict our attention to counting transversal MIS's in k-partite triangle-free graphs.

Lemma

If G is an n-vertex triangle-free 3-partite graph on $U \cup V \cup W$, then it contains at most n transversal MIS's.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma

If G is an n-vertex triangle-free 3-partite graph on $U \cup V \cup W$, then it contains at most n transversal MIS's.

Claim

For every $u \in U$ in at least one transversal MIS, there exist unique sets S_u , $T_u \subseteq U$ such that any MIS $(u, v, w) \in U \times V \times W$ satisfies $N(v) \cap U = S_u$ and $N(w) \cap U = T_u$.

Define $V(S) = \{v \in V : N(v) \cap U = S\}$ and similarly W(T). Let $U_{>2} \subseteq U$ be the vertices in at least two transversal MIS's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define $V(S) = \{v \in V : N(v) \cap U = S\}$ and similarly W(T). Let $U_{>2} \subseteq U$ be the vertices in at least two transversal MIS's.

Claim

The number of transversal MIS's using $u \in U_{\geq 2}$ is at most

$$\sum_{u \in U_{\geq 2}} \min\{|V(S_u)|, |W(T_u)|\}.$$

Claim

In the sum

$$\sum_{\substack{\in U_{>2}}} \min\{|V(S_u)|, |W(T_u)|\},\$$

 $u \in U_{\geq 2}$ it is possible to use the upper bounds

 $\min\{|V(S_u)|,|W(T_u)|\} \leq |V(S_u)|,|W(T_u)|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

such that each term appears at most once in the sum.

Claim

In the sum

$$\sum_{\substack{\in U_{>2}}} \min\{|V(S_u)|, |W(T_u)|\},\$$

 $u \in U_{\geq 2}$ it is possible to use the upper bounds

$$\min\{|V(S_u)|,|W(T_u)|\} \leq |V(S_u)|,|W(T_u)|$$

such that each term appears at most once in the sum.

This implies that the number of MIS's using vertices of $U_{\geq 2}$ are at most

$$\sum_{S} |V(S)| + \sum_{T} |W(T)| = |V| + |W|.$$

Claim

In the sum

$$\sum_{\substack{\in U_{>2}}} \min\{|V(S_u)|, |W(T_u)|\},\$$

 $u \in U_{\geq 2}$ it is possible to use the upper bounds

$$\min\{|V(S_u)|,|W(T_u)|\} \le |V(S_u)|,|W(T_u)|$$

such that each term appears at most once in the sum.

This implies that the number of MIS's using vertices of $U_{\geq 2}$ are at most

$$\sum_{S} |V(S)| + \sum_{T} |W(T)| = |V| + |W|.$$

This doesn't count MIS's which have $u \notin U_{\geq 2}$, giving an extra count of at most |U|.

There are many, many open problems left to explore.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

There are many, many open problems left to explore.

Conjecture

$$m_3(n,5) = \Theta(n^{5/2}).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_5 , then it contains at most $O(n^{5/2})$ 5-MIS's.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_5 , then it contains at most $O(n^{5/2})$ 5-MIS's.

In particular, one can not improve our lower bound of $\Omega(n^{5/2})$ by coming up with a "better" blowup-like construction for C_5 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_5 , then it contains at most $O(n^{5/2})$ 5-MIS's.

In particular, one can not improve our lower bound of $\Omega(n^{5/2})$ by coming up with a "better" blowup-like construction for C_5 .

Conjecture

If G is an n-vertex subgraph of a blowup of a k-vertex triangle-free graph H, then G contains at most $O(n^{k/2})$ k-MIS's.
Conjecture

There exists a k > 4 such that

$$m_3(n,k)=O(n^{k-3}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjecture

There exists a k > 4 such that

$$m_3(n,k)=O(n^{k-3}).$$

Our current best (non-trivial) bound is $O(n^{k-2})$, and we conjecture that the real answer is $O(n^{k/2})$.

Question

For any fixed t, is it true that

$$m_t(n,t)=O(n^{t-2}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For any fixed t, is it true that

$$m_t(n,t)=O(n^{t-2}).$$

If true, one can easily extend this to show that our lower bounds are tight for k < 2(t-1), i.e. when we only have a floor in the exponent.

For any fixed t, is it true that

$$m_t(n,t)=O(n^{t-2}).$$

If true, one can easily extend this to show that our lower bounds are tight for k < 2(t - 1), i.e. when we only have a floor in the exponent. We know this is true for t = 3, and it may be possible to extend our ideas to *t*-partite K_t -free graphs.

A D N A 目 N A E N A E N A B N A C N

Question

Are the o(1) terms in our exponents necessary when $t \ge 4$? In particular, is it true that

$$m_4(n,3) = n^{2-o(1)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

Are the o(1) terms in our exponents necessary when $t \ge 4$? In particular, is it true that

$$m_4(n,3) = n^{2-o(1)}.$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Are the o(1) terms in our exponents necessary when $t \ge 4$? In particular, is it true that

$$m_4(n,3) = n^{2-o(1)}.$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

This follows by reducing the problem to the Ruzsa-Szemerédi problem like before.

Question

Are the o(1) terms in our exponents necessary when $t \ge 4$? In particular, is it true that

$$m_4(n,3) = n^{2-o(1)}$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

This follows by reducing the problem to the Ruzsa-Szemerédi problem like before. It's possible that this same o(1) term is necessary for K_4 -free graphs in general, showing that $m_t(n, k)$ is intimately connected to the Ruzsa-Szemerédi problem.

・ロト・日本・日本・日本・日本

Question

If G is an *n*-vertex K_4 -free graph with at least $n^{\lfloor 2k/3 \rfloor - \epsilon}$ k-MIS's, is it true that G has chromatic number $O_k(1)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If G is an *n*-vertex K_4 -free graph with at least $n^{\lfloor 2k/3 \rfloor - \epsilon}$ k-MIS's, is it true that G has chromatic number $O_k(1)$?

If this, then one can reduce computing $m_4(n, k)$ to the k-partite setting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If G is an *n*-vertex K_4 -free graph with at least $n^{\lfloor 2k/3 \rfloor - \epsilon}$ k-MIS's, is it true that G has chromatic number $O_k(1)$?

If this, then one can reduce computing $m_4(n, k)$ to the *k*-partite setting. In particular this would give a positive answer to the previous problem, and it could probably be used to determine $m_4(n, 4)$ as well.

If G is an *n*-vertex K_4 -free graph with at least $n^{\lfloor 2k/3 \rfloor - \epsilon}$ k-MIS's, is it true that G has chromatic number $O_k(1)$?

If this, then one can reduce computing $m_4(n, k)$ to the *k*-partite setting. In particular this would give a positive answer to the previous problem, and it could probably be used to determine $m_4(n, 4)$ as well.

Note that for K_3 -free graphs it is easy to prove that if G has at least 1 k-MIS, then $\chi(G) \le k + 1$

In addition to order of magnitude, one could also ask for finer asymptotics values.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

Can one determine $m_t(n, 2)$ asymptotically for all t?

In addition to order of magnitude, one could also ask for finer asymptotics values.

Question

Can one determine $m_t(n, 2)$ asymptotically for all t?

We can prove an upper bound of $\frac{1}{2}(t-1)n$ by a simple counting argument, and a lower bound of roughly $\frac{1}{4}(t-1)n$ by taking a comatching of size 2n/(t-1) and replacing each vertex with a clique of size (t-1)/2.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Open Problems: Asymptotics

Conjecture

 $m_3(n,3) \sim n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Open Problems: Asymptotics

Conjecture

$$m_3(n,3) \sim n.$$

There are several constructions giving these asymptotics: a comatching together with a K_2 , a $K_{n/2,n/2}$ minus any 2-factor, and a "blowup" construction of P_2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Question

Can one say anything about $m_3(n, k)$ when k = cn for some constant c?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

Can one say anything about $m_3(n, k)$ when k = cn for some constant c?

Proposition

If n is even and $2n/5 \le k \le n/2$, then

$$m_3(n,k) \ge (25/32)^{k-n/2} 2^{n/2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Can one say anything about $m_3(n, k)$ when k = cn for some constant c?

Proposition

If n is even and $2n/5 \le k \le n/2$, then

$$m_3(n,k) \ge (25/32)^{k-n/2} 2^{n/2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Construction: take n - 2k copies of C_5 and 5k copies of K_2 .

Question

Can one say anything about $m_3(n, k)$ when k = cn for some constant c?

Proposition

If n is even and $2n/5 \le k \le n/2$, then

$$m_3(n,k) \ge (25/32)^{k-n/2}2^{n/2}.$$

Construction: take n - 2k copies of C_5 and 5k copies of K_2 . This is motivated by the Hujter-Tuza triangle-free construction which consists of a perfect matching with a C_5 is n is odd, which suggests that C_5 and K_2 are the most "efficient" triangle-free components for finding MIS's.

Define $m_t^r(n, k)$ to be the maximum number of MIS's of size k in a K_t^r -free r-uniform hypergraph on n vertices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Define $m_t^r(n, k)$ to be the maximum number of MIS's of size k in a K_t^r -free r-uniform hypergraph on n vertices. Somewhat surprisingly, we can completely determine the order of magnitude of $m_t^r(n, k)$ for $r \ge 3$.

Proposition (He, Nie, S. 2021)

For $n \ge 4$, we have

$$m_4^3(n,2) = n-1.$$

For any other set of parameters satisfying $r \ge 3$, $k \ge r - 1$, and $t \ge r + 1$,

$$m_t^r(n,k) = \Theta_k(n^k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Construction: split vertex set into blocks V_i of size n/k, take your hyperedges to be any set using two vertices from some V_i and one from each of $V_{i+1}, \ldots, V_{i+r-2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can one determine sharper asymptotic bounds for $m_t^r(n, k)$?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Can one determine sharper asymptotic bounds for $m_t^r(n, k)$?

Question

How many MIS's (in general or of a given size) can an *n*-vertex *r*-uniform hypergraph have?

Can one determine sharper asymptotic bounds for $m_t^r(n, k)$?

Question

How many MIS's (in general or of a given size) can an *n*-vertex *r*-uniform hypergraph have?

The best construction I know of is to take a disjoint union of cliques of size 2r - 1.

Can one determine sharper asymptotic bounds for $m_t^r(n, k)$?

Question

How many MIS's (in general or of a given size) can an *n*-vertex *r*-uniform hypergraph have?

The best construction I know of is to take a disjoint union of cliques of size 2r - 1. Note that when r = 2 this gives a disjoint union of triangles (which is tight).

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●