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History

Given a graph G , we say that a set I ⊆ V (G ) is a maximal
independent set (abbreviated MIS) if I is an independent set but
I ∪ {v} is not for any v /∈ I .

There has been a lot of work on algorithmic aspects of MIS’s, in
part due to application in social network analysis, bioinformatics,
information retrieval, computer vision,...

Question

Given a family of graphs G, what’s the maximum number of MIS’s
that a graph G ∈ G can have?
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History

Let m(n) denote the maximum number of MIS’s in an n-vertex
graph.

Theorem (Miller, Muller 1960; Moon, Moser 1965)

If n ≥ 2, then

m(n) =


3n/3 n ≡ 0 mod 3,

4 · 3(n−4)/3 n ≡ 1 mod 3,

2 · 3(n−2)/3 n ≡ 2 mod 3.

• •

•

• •

•
· · ·
• •

•

What happens if we consider graphs which are “far” from this
extremal construction?
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History

Let m3(n) denote the maximum number of MIS’s in an n-vertex
triangle-free graph.

Theorem (Hujter, Tuza 1993)

If n ≥ 4, then

m3(n) =

{
2n/2 n ≡ 0 mod 2,

5 · 2(n−5)/2 n ≡ 1 mod 2.

•
•
•
•
· · ·
•
•

This theorem (and variants thereof) have found applications in
counting the number of maximal triangle-free graphs on n-vertices
(Balogh-Peťŕıčková) as well as to counting the number of maximal
sum-free subsets (Balogh-Liu-Sharifzadeh-Treglown).
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History

A somewhat more “refined” problem one can consider is counting
the number of MIS’s of a given size k, which we will refer to as
k-MIS’s.

Let m(n, k) denote the maximum number of k-MIS’s
that an n-vertex graph can have.

Theorem (Nielsen 2002)

If s ∈ {0, 1, . . . , k − 1} with n ≡ s mod k, then

m(n, k) = bn/kck−s dn/kes .

•

•
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Again one can ask how this function changes if we consider graphs
which are “far” from the disjoint union of cliques.
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Clique-free Graphs

Define mt(n, k) to be the maximum number of k-MIS’s that an
n-vertex Kt-free graph can have.

Given the previous constructions,
we might expect that the maximizer for mt(n, k) will consist of the
disjoint union of some “nice” graphs. One natural construction
that comes up is Kbn/2c,dn/2e minus a maximum matching, which
we will refer to as a comatching.

• • · · · • •

• • · · · • •

Note that the comatching has (at least) bn/2c 2-MIS’s.
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Clique-free Graphs

Reasonable Question

Is it the case that for all k , t we have

mt(n, k) = Ok,t(n
bk/2c).

Theorem (He, Nie, S. 2021)

For n ≥ 8 we have
m3(n, 2) = bn/2c ,

and the unique graph achieving this bound is a comatching of
order n. Moreover, we have

m3(n, 3) = Θ(n),

m3(n, 4) = Θ(n2).
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Better Constructions

Proposition

For all t ≥ 4,
mt(n, 3) ≥ n2−o(1).

A famous result of Ruzsa and Szemerédi says that there exists an
n-vertex tripartite graph G on U ∪ V ∪W with n2−o(1) edges such
that every edge is contained in a unique triangle. Let G ′ be the
“tripartite complement” of G , i.e. take the complement Ḡ and
then delete all the edges within each of the parts U,V ,W .
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Better Constructions

Claim: every triangle T = {u, v ,w} in G is a 3-MIS in G ′.

It’s an
independent set since it’s the (tripartite) complement of a triangle.
If {u, v ,w ,w ′} is an independent set in G ′, then {u, v ,w ′} is a
triangle in G . Because there is a unique triangle in G containing
uv , we must have w ′ = w , i.e. this is maximal. Since G contains
n2−o(1) triangles, and since the tripartite graph G ′ is Kt-free for
t ≥ 4, we conclude the result.
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Better Constructions

Mimicking this proof strategy, we can improve our bounds if there
exists k-partite n-vertex graphs with many copies of Kk−1 which
are all contained in a unique Kk .

Theorem (Gowers, B. Janzer 2020)

For all 1 ≤ ` < k there exist n-vertex graphs with n`−o(1) copies of
K` such that every K` is contained in at most one Kk .

Taking ` = k − 1 gives the following:

Proposition

For k < t we have

mt(n, k) ≥ nk−1−o(1).
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Better Constructions

By taking disjoint unions of these constructions (like we did with
K1 and comatchings) gives the following:

Theorem (He, Nie, S. 2021)

For all fixed k, t, we have

mt(n, k) ≥ n

⌊
(t−2)k
t−1

⌋
−o(1)

.

Reasonable Question

Is this bound essentially tight? In particular, for triangle-free
graphs do we have

m3(n, k) = Θ(nbk/2c).
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Better Construction: Blowups

Consider a Ck with edges e1, . . . , ek and vertices vi ∈ ei ∩ ei+1 and
define Gn(Ck ,

1
2) as follows. Let Vi consist of the set of functions

f : {ei , ei+1} → [n1/2]. We make f ∈ Vi adjacent to g ∈ Vj if and
only if there is an edge e ∈ E (Ck) with vi , vj ∈ e (i.e. if i = j ± 1)
and such that f (e) 6= g(e).



Better Construction: Blowups

Lemma

For each function F : E (Ck)→ [n1/2], the set I of
f ∈ V (Gn(Ck ,

1
2)) which agree with F forms a k-MIS.



Better Construction: Blowups

These blowups have kn vertices, have at least nk/2 k-MIS’s (i.e.
functions F : E (Ck)→ [n1/2]), and they are triangle-free for k > 3.

Theorem (He, Nie, S. 2021)

For all k ≥ 4,
m3(n, k) = Ω(nk/2).

One can generalize this blowup construction in two ways.
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Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define
Gn(H,M) to be the graph on

⋃
u∈V (H) Vu where Vu are the set of

functions f which map e 3 u to [nM(e)], and we make
f ∈ Vu, g ∈ Vw adjacent iff uw ∈ E (H) and f (uw) 6= g(uw).

For example, the previous construction used H = Ck and M ≡ 1
2 .

For H = C2k , taking M to be a perfect matching gives a disjoint
union of comatchings. One can further interpolate between these
two constructions by varying M.

If H is a k-vertex triangle-free graph and M has size k/2, then
Gn(H,M) will have kn vertices, Ω(nk/2) distinct k-MIS’s, and be
triangle-free. Thus if this bound is tight, there are many different
constructions achieving it.
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Better Construction: Blowups

One can also generalize this construction by taking “blowups” of
hypergraphs H.

Essentially in this setting one replaces hyperedges
of H by “interwoven” copies of the Ruzsa-Szemerédi and
Gowers-Janzer constructions instead of “interwoven” comatchings.
With this construction and H the tight cycle, one can prove the
following:

Theorem (He, Nie, S. 2021)

t ≥ 3 and k ≥ 2(t − 1), then

mt(n, k) ≥ n
(t−2)k
t−1

−o(1).

Note that this drops the floor from the previous bound.
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Upper Bounds

We think these lower bounds are essentially best possible:

Conjecture (He, Nie, S.; S.)
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Upper Bounds

Proposition

For all k < t we have

mt(n, k) = O(n
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(t−2)k
t−1

⌋
) = O(nk−1).

It’s easy to prove mt(n, 1) ≤ t, and then one can inductively use
that (roughly) mt(n, k) ≤ n ·mt(n, k − 1).
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Upper Bounds

Theorem (He, Nie, S. 2021)

For all k ≤ 4, we have

m3(n, k) = O(nbk/2c).

The case k ≤ 2 follows from the previous proposition, and the
k = 4 case will follow from the k = 3 case since (roughly)
m3(n, 4) ≤ n ·m3(n, 3). Thus it remains to prove this for k = 3.
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Upper Bounds

If G is a k-partite graph, let t(G , k) denote the number of
“transversal MIS’s”, i.e. MIS’s using exactly one vertex from each
of the k parts of G .

Lemma

If G is a triangle-free graph on n vertices, then G has an induced
k-partite subgraph G ′ ⊆ G satisfying

t(G ′, k) ≥ (4k)−km(G , k),

where m(H, k) denotes the number of k-MIS’s of H.

That is, to determine m3(n, k) it suffices to restrict our attention
to counting transversal MIS’s in k-partite triangle-free graphs.
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Upper Bounds

Lemma

If G is an n-vertex triangle-free 3-partite graph on U ∪ V ∪W,
then it contains at most n transversal MIS’s.

Claim

For every u ∈ U in at least one transversal MIS, there exist unique
sets Su,Tu ⊆ U such that any MIS (u, v ,w) ∈ U × V ×W
satisfies N(v) ∩ U = Su and N(w) ∩ U = Tu.
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Upper Bounds

Define V (S) = {v ∈ V : N(v) ∩ U = S} and similarly W (T ). Let
U≥2 ⊆ U be the vertices in at least two transversal MIS’s.

Claim

The number of transversal MIS’s using u ∈ U≥2 is at most∑
u∈U≥2

min{|V (Su)|, |W (Tu)|}.
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Upper Bounds

Claim

In the sum ∑
u∈U≥2

min{|V (Su)|, |W (Tu)|},

it is possible to use the upper bounds

min{|V (Su)|, |W (Tu)|} ≤ |V (Su)|, |W (Tu)|

such that each term appears at most once in the sum.

This implies that the number of MIS’s using vertices of U≥2 are at
most ∑

S

|V (S)|+
∑
T

|W (T )| = |V |+ |W |.

This doesn’t count MIS’s which have u /∈ U≥2, giving an extra
count of at most |U|.
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Open Problems: Order of Magnitude

There are many, many open problems left to explore.

Conjecture

m3(n, 5) = Θ(n5/2).
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Open Problems: Order of Magnitude

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C5,
then it contains at most O(n5/2) 5-MIS’s.

In particular, one can not improve our lower bound of Ω(n5/2) by
coming up with a “better” blowup-like construction for C5.

Conjecture

If G is an n-vertex subgraph of a blowup of a k-vertex triangle-free
graph H, then G contains at most O(nk/2) k-MIS’s.
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Open Problems: Order of Magnitude

Conjecture

There exists a k > 4 such that

m3(n, k) = O(nk−3).

Our current best (non-trivial) bound is O(nk−2), and we
conjecture that the real answer is O(nk/2).
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Open Problems: Order of Magnitude

Question

For any fixed t, is it true that

mt(n, t) = O(nt−2).

If true, one can easily extend this to show that our lower bounds
are tight for k < 2(t − 1), i.e. when we only have a floor in the
exponent. We know this is true for t = 3, and it may be possible
to extend our ideas to t-partite Kt-free graphs.
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Open Problems: Order of Magnitude

Question

Are the o(1) terms in our exponents necessary when t ≥ 4? In
particular, is it true that

m4(n, 3) = n2−o(1).

Proposition

If G is an n-vertex tripartite graph, then G has at most n2−o(1)

3-MIS’s.

This follows by reducing the problem to the Ruzsa-Szemerédi
problem like before. It’s possible that this same o(1) term is
necessary for K4-free graphs in general, showing that mt(n, k) is
intimately connected to the Ruzsa-Szemerédi problem.
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Open Problems: Order of Magnitude

Question

If G is an n-vertex K4-free graph with at least nb2k/3c−ε k-MIS’s, is
it true that G has chromatic number Ok(1)?

If this, then one can reduce computing m4(n, k) to the k-partite
setting. In particular this would give a positive answer to the
previous problem, and it could probably be used to determine
m4(n, 4) as well.

Note that for K3-free graphs it is easy to prove that if G has at
least 1 k-MIS, then χ(G ) ≤ k + 1
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Open Problems: Asymptotics

In addition to order of magnitude, one could also ask for finer
asymptotics values.

Question

Can one determine mt(n, 2) asymptotically for all t?

We can prove an upper bound of 1
2(t − 1)n by a simple counting

argument, and a lower bound of roughly 1
4(t − 1)n by taking a

comatching of size 2n/(t − 1) and replacing each vertex with a
clique of size (t − 1)/2.
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Open Problems: Asymptotics

Conjecture

m3(n, 3) ∼ n.

There are several constructions giving these asymptotics: a
comatching together with a K2, a Kn/2,n/2 minus any 2-factor, and
a “blowup” construction of P2.
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Open Problems: Large k

Question

Can one say anything about m3(n, k) when k = cn for some
constant c?

Proposition

If n is even and 2n/5 ≤ k ≤ n/2, then

m3(n, k) ≥ (25/32)k−n/22n/2.

Construction: take n − 2k copies of C5 and 5k copies of K2. This
is motivated by the Hujter-Tuza triangle-free construction which
consists of a perfect matching with a C5 is n is odd, which
suggests that C5 and K2 are the most “efficient” triangle-free
components for finding MIS’s.
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Open Problems: Hypergraphs

Define mr
t (n, k) to be the maximum number of MIS’s of size k in a

K r
t -free r -uniform hypergraph on n vertices.

Somewhat
surprisingly, we can completely determine the order of magnitude
of mr

t (n, k) for r ≥ 3.

Proposition (He, Nie, S. 2021)

For n ≥ 4, we have
m3

4(n, 2) = n − 1.

For any other set of parameters satisfying r ≥ 3, k ≥ r − 1, and
t ≥ r + 1,

mr
t (n, k) = Θk(nk).
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Open Problems: Hypergraphs

Construction: split vertex set into blocks Vi of size n/k , take your
hyperedges to be any set using two vertices from some Vi and one
from each of Vi+1, . . . ,Vi+r−2.



Open Problems: Hypergraphs

Question

Can one determine sharper asymptotic bounds for mr
t (n, k)?

Question

How many MIS’s (in general or of a given size) can an n-vertex
r -uniform hypergraph have?

The best construction I know of is to take a disjoint union of
cliques of size 2r − 1. Note that when r = 2 this gives a disjoint
union of triangles (which is tight).
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The End

Thank You!
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