Maximal Independent Sets in Clique-free Graphs

Sam Spiro, UC San Diego.

Joint with Xiaoyu He and Jiaxi Nie

History

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup\{v\}$ is not for any $v \notin I$.

History

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup\{v\}$ is not for any $v \notin I$.

There has been a lot of work on algorithmic aspects of MIS's, in part due to application in social network analysis, bioinformatics, information retrieval, computer vision,...

History

Given a graph G, we say that a set $I \subseteq V(G)$ is a maximal independent set (abbreviated MIS) if I is an independent set but $I \cup\{v\}$ is not for any $v \notin I$.

There has been a lot of work on algorithmic aspects of MIS's, in part due to application in social network analysis, bioinformatics, information retrieval, computer vision,...

Question

Given a family of graphs \mathcal{G}, what's the maximum number of MIS's that a graph $G \in \mathcal{G}$ can have?

History

Let $m(n)$ denote the maximum number of MIS's in an n-vertex graph.

History

Let $m(n)$ denote the maximum number of MIS's in an n-vertex graph.
Theorem (Miller, Muller 1960; Moon, Moser 1965)
If $n \geq 2$, then

$$
m(n)=\left\{\begin{array}{lll}
3^{n / 3} & n \equiv 0 & \bmod 3 \\
4 \cdot 3^{(n-4) / 3} & n \equiv 1 & \bmod 3 \\
2 \cdot 3^{(n-2) / 3} & n \equiv 2 & \bmod 3
\end{array}\right.
$$

History

Let $m(n)$ denote the maximum number of MIS's in an n-vertex graph.
Theorem (Miller, Muller 1960; Moon, Moser 1965)
If $n \geq 2$, then

$$
m(n)=\left\{\begin{array}{lll}
3^{n / 3} & n \equiv 0 & \bmod 3 \\
4 \cdot 3^{(n-4) / 3} & n \equiv 1 & \bmod 3 \\
2 \cdot 3^{(n-2) / 3} & n \equiv 2 & \bmod 3
\end{array}\right.
$$

-••

What happens if we consider graphs which are "far" from this extremal construction?

History

Let $m_{3}(n)$ denote the maximum number of MIS's in an n-vertex triangle-free graph.

History

Let $m_{3}(n)$ denote the maximum number of MIS's in an n-vertex triangle-free graph.

Theorem (Hujter, Tuza 1993)
If $n \geq 4$, then

$$
m_{3}(n)=\left\{\begin{array}{lll}
2^{n / 2} & n \equiv 0 & \bmod 2 \\
5 \cdot 2^{(n-5) / 2} & n \equiv 1 & \bmod 2
\end{array}\right.
$$

History

Let $m_{3}(n)$ denote the maximum number of MIS's in an n-vertex triangle-free graph.

Theorem (Hujter, Tuza 1993)

If $n \geq 4$, then

$$
m_{3}(n)= \begin{cases}2^{n / 2} & n \equiv 0 \quad \bmod 2 \\ 5 \cdot 2^{(n-5) / 2} & n \equiv 1 \quad \bmod 2\end{cases}
$$

- - ...

This theorem (and variants thereof) have found applications in counting the number of maximal triangle-free graphs on n-vertices (Balogh-Petríččková) as well as to counting the number of maximal sum-free subsets (Balogh-Liu-Sharifzadeh-Treglown).

History

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's.

History

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let $m(n, k)$ denote the maximum number of k-MIS's that an n-vertex graph can have.

History

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let $m(n, k)$ denote the maximum number of k-MIS's that an n-vertex graph can have.

Theorem (Nielsen 2002)

If $s \in\{0,1, \ldots, k-1\}$ with $n \equiv s \bmod k$, then

$$
m(n, k)=\lfloor n / k\rfloor^{k-s}\lceil n / k\rceil^{s} .
$$

. .

History

A somewhat more "refined" problem one can consider is counting the number of MIS's of a given size k, which we will refer to as k-MIS's. Let $m(n, k)$ denote the maximum number of k-MIS's that an n-vertex graph can have.

Theorem (Nielsen 2002)

If $s \in\{0,1, \ldots, k-1\}$ with $n \equiv s \bmod k$, then

$$
m(n, k)=\lfloor n / k\rfloor^{k-s}\lceil n / k\rceil^{s} .
$$

-•

Again one can ask how this function changes if we consider graphs which are "far" from the disjoint union of cliques.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have. Given the previous constructions, we might expect that the maximizer for $m_{t}(n, k)$ will consist of the disjoint union of some "nice" graphs.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have. Given the previous constructions, we might expect that the maximizer for $m_{t}(n, k)$ will consist of the disjoint union of some "nice" graphs. One natural construction that comes up is $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ minus a maximum matching, which we will refer to as a comatching.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have. Given the previous constructions, we might expect that the maximizer for $m_{t}(n, k)$ will consist of the disjoint union of some "nice" graphs. One natural construction that comes up is $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ minus a maximum matching, which we will refer to as a comatching.

Note that the comatching has (at least) $\lfloor n / 2\rfloor 2-M I S ' s$.

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

$$
m_{3}(n, 4)=\Omega\left(n^{2}\right)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

$$
m_{3}(n, 4)=\Omega\left(n^{2}\right)
$$

More generally this shows $m_{t}(n, k)=\Omega\left(n^{\lfloor k / 2\rfloor}\right)$ for fixed k.

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Theorem (He, Nie, S. 2021)
For $n \geq 8$ we have

$$
m_{3}(n, 2)=\lfloor n / 2\rfloor,
$$

and the unique graph achieving this bound is a comatching of order n.

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Theorem (He, Nie, S. 2021)
For $n \geq 8$ we have

$$
m_{3}(n, 2)=\lfloor n / 2\rfloor,
$$

and the unique graph achieving this bound is a comatching of order n. Moreover, we have

$$
\begin{aligned}
& m_{3}(n, 3)=\Theta(n), \\
& m_{3}(n, 4)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)}
$$

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)} .
$$

A famous result of Ruzsa and Szemerédi says that there exists an n-vertex tripartite graph G on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle.

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)} .
$$

A famous result of Ruzsa and Szemerédi says that there exists an n-vertex tripartite graph G on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle. Let G^{\prime} be the "tripartite complement" of G, i.e. take the complement \bar{G} and then delete all the edges within each of the parts U, V, W.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a $3-\mathrm{MIS}$ in G^{\prime}.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a 3 -MIS in G^{\prime}. It's an independent set since it's the (tripartite) complement of a triangle.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a 3 -MIS in G^{\prime}. It's an independent set since it's the (tripartite) complement of a triangle. If $\left\{u, v, w, w^{\prime}\right\}$ is an independent set in G^{\prime}, then $\left\{u, v, w^{\prime}\right\}$ is a triangle in G.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a 3 -MIS in G^{\prime}. It's an independent set since it's the (tripartite) complement of a triangle. If $\left\{u, v, w, w^{\prime}\right\}$ is an independent set in G^{\prime}, then $\left\{u, v, w^{\prime}\right\}$ is a triangle in G. Because there is a unique triangle in G containing $u v$, we must have $w^{\prime}=w$, i.e. this is maximal.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a 3 -MIS in G^{\prime}. It's an independent set since it's the (tripartite) complement of a triangle. If $\left\{u, v, w, w^{\prime}\right\}$ is an independent set in G^{\prime}, then $\left\{u, v, w^{\prime}\right\}$ is a triangle in G. Because there is a unique triangle in G containing $u v$, we must have $w^{\prime}=w$, i.e. this is maximal. Since G contains $n^{2-o(1)}$ triangles, and since the tripartite graph G^{\prime} is K_{t}-free for $t \geq 4$, we conclude the result.

Better Constructions

Mimicking this proof strategy, we can improve our bounds if there exists k-partite n-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_{k}.

Better Constructions

Mimicking this proof strategy, we can improve our bounds if there exists k-partite n-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_{k}.

Theorem (Gowers, B. Janzer 2020)

For all $1 \leq \ell<k$ there exist n-vertex graphs with $n^{\ell-o(1)}$ copies of K_{ℓ} such that every K_{ℓ} is contained in at most one K_{k}.

Better Constructions

Mimicking this proof strategy, we can improve our bounds if there exists k-partite n-vertex graphs with many copies of K_{k-1} which are all contained in a unique K_{k}.

Theorem (Gowers, B. Janzer 2020)

For all $1 \leq \ell<k$ there exist n-vertex graphs with $n^{\ell-o(1)}$ copies of K_{ℓ} such that every K_{ℓ} is contained in at most one K_{k}.

Taking $\ell=k-1$ gives the following:

Proposition

For $k<t$ we have

$$
m_{t}(n, k) \geq n^{k-1-o(1)}
$$

Better Constructions

By taking disjoint unions of these constructions (like we did with K_{1} and comatchings) gives the following:

Theorem (He, Nie, S. 2021)
For all fixed k, t, we have

$$
m_{t}(n, k) \geq n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor-o(1)}
$$

Better Constructions

By taking disjoint unions of these constructions (like we did with K_{1} and comatchings) gives the following:

Theorem (He, Nie, S. 2021)

For all fixed k, t, we have

$$
m_{t}(n, k) \geq n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor-o(1)}
$$

Reasonable Question

Is this bound essentially tight? In particular, for triangle-free graphs do we have

$$
m_{3}(n, k)=\Theta\left(n^{\lfloor k / 2\rfloor}\right)
$$

Better Construction：Blowups

Consider a C_{k} with edges e_{1}, \ldots, e_{k} and vertices $v_{i} \in e_{i} \cap e_{i+1}$ and define $G_{n}\left(C_{k}, \frac{1}{2}\right)$ as follows．Let V_{i} consist of the set of functions $f:\left\{e_{i}, e_{i+1}\right\} \rightarrow\left[n^{1 / 2}\right]$ ．We make $f \in V_{i}$ adjacent to $g \in V_{j}$ if and only if there is an edge $e \in E\left(C_{k}\right)$ with $v_{i}, v_{j} \in e$（i．e．if $i=j \pm 1$ ） and such that $f(e) \neq g(e)$ ．

Better Construction: Blowups

Lemma
For each function $F: E\left(C_{k}\right) \rightarrow\left[n^{1 / 2}\right]$, the set I of $f \in V\left(G_{n}\left(C_{k}, \frac{1}{2}\right)\right)$ which agree with F forms a $k-M I S$.

$$
\begin{aligned}
& g \neq f_{3} \Rightarrow\left\{\begin{array}{l}
g\left(e_{3}\right) \neq 1 \Rightarrow g \sim f_{2} \\
v_{2}
\end{array}\left(e_{4}\right) \neq 1 \neq g \sim F_{y}\right.
\end{aligned}
$$

Better Construction: Blowups

These blowups have $k n$ vertices, have at least $n^{k / 2} k$-MIS's (i.e. functions $F: E\left(C_{k}\right) \rightarrow\left[n^{1 / 2}\right]$), and they are triangle-free for $k>3$.

Better Construction: Blowups

These blowups have $k n$ vertices, have at least $n^{k / 2} k$-MIS's (i.e. functions $F: E\left(C_{k}\right) \rightarrow\left[n^{1 / 2}\right]$), and they are triangle-free for $k>3$.

Theorem (He, Nie, S. 2021)
For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right)
$$

Better Construction: Blowups

These blowups have $k n$ vertices, have at least $n^{k / 2} k$-MIS's (i.e. functions $F: E\left(C_{k}\right) \rightarrow\left[n^{1 / 2}\right]$), and they are triangle-free for $k>3$.

Theorem (He, Nie, S. 2021)
For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right)
$$

One can generalize this blowup construction in two ways.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

For example, the previous construction used $H=C_{k}$ and $M \equiv \frac{1}{2}$.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

For example, the previous construction used $H=C_{k}$ and $M \equiv \frac{1}{2}$. For $H=C_{2 k}$, taking M to be a perfect matching gives a disjoint union of comatchings.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

For example, the previous construction used $H=C_{k}$ and $M \equiv \frac{1}{2}$. For $H=C_{2 k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

For example, the previous construction used $H=C_{k}$ and $M \equiv \frac{1}{2}$. For $H=C_{2 k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

If H is a k-vertex triangle-free graph and M has size $k / 2$, then $G_{n}(H, M)$ will have $k n$ vertices, $\Omega\left(n^{k / 2}\right)$ distinct k-MIS's, and be triangle-free.

Better Construction: Blowups

Given any k-vertex graph H and a fractional matching M, define $G_{n}(H, M)$ to be the graph on $\bigcup_{u \in V(H)} V_{u}$ where V_{u} are the set of functions f which map $e \ni u$ to $\left[n^{M(e)}\right]$, and we make $f \in V_{u}, g \in V_{w}$ adjacent iff $u w \in E(H)$ and $f(u w) \neq g(u w)$.

For example, the previous construction used $H=C_{k}$ and $M \equiv \frac{1}{2}$. For $H=C_{2 k}$, taking M to be a perfect matching gives a disjoint union of comatchings. One can further interpolate between these two constructions by varying M.

If H is a k-vertex triangle-free graph and M has size $k / 2$, then $G_{n}(H, M)$ will have $k n$ vertices, $\Omega\left(n^{k / 2}\right)$ distinct k-MIS's, and be triangle-free. Thus if this bound is tight, there are many different constructions achieving it.

Better Construction: Blowups

One can also generalize this construction by taking "blowups" of hypergraphs H.

Better Construction: Blowups

One can also generalize this construction by taking "blowups" of hypergraphs H. Essentially in this setting one replaces hyperedges of H by "interwoven" copies of the Ruzsa-Szemerédi and Gowers-Janzer constructions instead of "interwoven" comatchings.

Better Construction: Blowups

One can also generalize this construction by taking "blowups" of hypergraphs H. Essentially in this setting one replaces hyperedges of H by "interwoven" copies of the Ruzsa-Szemerédi and Gowers-Janzer constructions instead of "interwoven" comatchings. With this construction and H the tight cycle, one can prove the following:

Theorem (He, Nie, S. 2021)
$t \geq 3$ and $k \geq 2(t-1)$, then

$$
m_{t}(n, k) \geq n^{\frac{(t-2) k}{t-1}-o(1)}
$$

Note that this drops the floor from the previous bound.

Upper Bounds

We think these lower bounds are essentially best possible:

Conjecture (He, Nie, S.; S.)

For all fixed k, t, we have

$$
m_{t}(n, k)=O\left(n^{\frac{(t-2) k}{t-1}}\right)
$$

Moreover, for $k<2(t-1)$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor}\right)
$$

Upper Bounds

Proposition

For all $k<t$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor}\right)=O\left(n^{k-1}\right)
$$

Upper Bounds

Proposition

For all $k<t$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor}\right)=O\left(n^{k-1}\right)
$$

It's easy to prove $m_{t}(n, 1) \leq t$, and then one can inductively use that (roughly) $m_{t}(n, k) \leq n \cdot m_{t}(n, k-1)$.

Upper Bounds

Theorem (He, Nie, S. 2021)
For all $k \leq 4$, we have

$$
m_{3}(n, k)=O\left(n^{\lfloor k / 2\rfloor}\right)
$$

Upper Bounds

Theorem (He, Nie, S. 2021)
For all $k \leq 4$, we have

$$
m_{3}(n, k)=O\left(n^{\lfloor k / 2\rfloor}\right)
$$

The case $k \leq 2$ follows from the previous proposition, and the $k=4$ case will follow from the $k=3$ case since (roughly) $m_{3}(n, 4) \leq n \cdot m_{3}(n, 3)$. Thus it remains to prove this for $k=3$.

Upper Bounds

If G is a k-partite graph, let $t(G, k)$ denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

Upper Bounds

If G is a k-partite graph, let $t(G, k)$ denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

Lemma

If G is a triangle-free graph on n vertices, then G has an induced k-partite subgraph $G^{\prime} \subseteq G$ satisfying

$$
t\left(G^{\prime}, k\right) \geq(4 k)^{-k} m(G, k)
$$

where $m(H, k)$ denotes the number of $k-M I S$'s of H.

Upper Bounds

If G is a k-partite graph, let $t(G, k)$ denote the number of "transversal MIS's", i.e. MIS's using exactly one vertex from each of the k parts of G.

Lemma

If G is a triangle-free graph on n vertices, then G has an induced k-partite subgraph $G^{\prime} \subseteq G$ satisfying

$$
t\left(G^{\prime}, k\right) \geq(4 k)^{-k} m(G, k)
$$

where $m(H, k)$ denotes the number of $k-M I S$'s of H.
That is, to determine $m_{3}(n, k)$ it suffices to restrict our attention to counting transversal MIS's in k-partite triangle-free graphs.

Upper Bounds

Lemma

If G is an n-vertex triangle-free 3-partite graph on $U \cup V \cup W$, then it contains at most n transversal MIS's.

Upper Bounds

Lemma

If G is an n-vertex triangle-free 3-partite graph on $U \cup V \cup W$, then it contains at most n transversal MIS's.

Claim

For every $u \in U$ in at least one transversal MIS, there exist unique sets $S_{u}, T_{u} \subseteq U$ such that any MIS $(u, v, w) \in U \times V \times W$ satisfies $N(v) \cap U=S_{u}$ and $N(w) \cap U=T_{u}$.

Upper Bounds

Define $V(S)=\{v \in V: N(v) \cap U=S\}$ and similarly $W(T)$. Let $U_{\geq 2} \subseteq U$ be the vertices in at least two transversal MIS's.

Upper Bounds

Define $V(S)=\{v \in V: N(v) \cap U=S\}$ and similarly $W(T)$. Let $U_{\geq 2} \subseteq U$ be the vertices in at least two transversal MIS's.

Claim

The number of transversal MIS's using $u \in U_{\geq 2}$ is at most

$$
\sum_{u \in U_{\geq 2}} \min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\}
$$

Upper Bounds

Claim

In the sum

$$
\sum_{u \in U_{\geq 2}} \min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\}
$$

it is possible to use the upper bounds

$$
\min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\} \leq\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|
$$

such that each term appears at most once in the sum.

Upper Bounds

Claim

In the sum

$$
\sum_{u \in U_{\geq 2}} \min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\}
$$

it is possible to use the upper bounds

$$
\min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\} \leq\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|
$$

such that each term appears at most once in the sum.
This implies that the number of MIS's using vertices of $U_{\geq 2}$ are at most

$$
\sum_{S}|V(S)|+\sum_{T}|W(T)|=|V|+|W|
$$

Upper Bounds

Claim

In the sum

$$
\sum_{u \in U_{\geq 2}} \min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\}
$$

it is possible to use the upper bounds

$$
\min \left\{\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|\right\} \leq\left|V\left(S_{u}\right)\right|,\left|W\left(T_{u}\right)\right|
$$

such that each term appears at most once in the sum.
This implies that the number of MIS's using vertices of $U_{\geq 2}$ are at most

$$
\sum_{S}|V(S)|+\sum_{T}|W(T)|=|V|+|W|
$$

This doesn't count MIS's which have $u \notin U_{\geq 2}$, giving an extra count of at most $|U|$.

Open Problems: Order of Magnitude

There are many, many open problems left to explore.

Open Problems: Order of Magnitude

There are many, many open problems left to explore.
Conjecture

$$
m_{3}(n, 5)=\Theta\left(n^{5 / 2}\right)
$$

Open Problems: Order of Magnitude

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_{5}, then it contains at most $O\left(n^{5 / 2}\right) 5-M I S$'s.

Open Problems: Order of Magnitude

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_{5}, then it contains at most $O\left(n^{5 / 2}\right) 5-M I S$'s.

In particular, one can not improve our lower bound of $\Omega\left(n^{5 / 2}\right)$ by coming up with a "better" blowup-like construction for C_{5}.

Open Problems: Order of Magnitude

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_{5}, then it contains at most $O\left(n^{5 / 2}\right) 5-M I S$'s.

In particular, one can not improve our lower bound of $\Omega\left(n^{5 / 2}\right)$ by coming up with a "better" blowup-like construction for C_{5}.

Conjecture

If G is an n-vertex subgraph of a blowup of a k-vertex triangle-free graph H, then G contains at most $O\left(n^{k / 2}\right) k$-MIS's.

Open Problems: Order of Magnitude

Conjecture

There exists a $k>4$ such that

$$
m_{3}(n, k)=O\left(n^{k-3}\right)
$$

Open Problems: Order of Magnitude

Conjecture

There exists a $k>4$ such that

$$
m_{3}(n, k)=O\left(n^{k-3}\right)
$$

Our current best (non-trivial) bound is $O\left(n^{k-2}\right)$, and we conjecture that the real answer is $O\left(n^{k / 2}\right)$.

Open Problems: Order of Magnitude

Question

For any fixed t, is it true that

$$
m_{t}(n, t)=O\left(n^{t-2}\right)
$$

Open Problems: Order of Magnitude

Question

For any fixed t, is it true that

$$
m_{t}(n, t)=O\left(n^{t-2}\right) .
$$

If true, one can easily extend this to show that our lower bounds are tight for $k<2(t-1)$, i.e. when we only have a floor in the exponent.

Open Problems: Order of Magnitude

Question

For any fixed t, is it true that

$$
m_{t}(n, t)=O\left(n^{t-2}\right)
$$

If true, one can easily extend this to show that our lower bounds are tight for $k<2(t-1)$, i.e. when we only have a floor in the exponent. We know this is true for $t=3$, and it may be possible to extend our ideas to t-partite K_{t}-free graphs.

Open Problems: Order of Magnitude

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)}
$$

Open Problems: Order of Magnitude

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)}
$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

Open Problems: Order of Magnitude

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)}
$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

This follows by reducing the problem to the Ruzsa-Szemerédi problem like before.

Open Problems: Order of Magnitude

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)}
$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

This follows by reducing the problem to the Ruzsa-Szemerédi problem like before. It's possible that this same o(1) term is necessary for K_{4}-free graphs in general, showing that $m_{t}(n, k)$ is intimately connected to the Ruzsa-Szemerédi problem.

Open Problems: Order of Magnitude

Question

If G is an n-vertex K_{4}-free graph with at least $n^{\lfloor 2 k / 3\rfloor-\epsilon} k$-MIS's, is it true that G has chromatic number $O_{k}(1)$?

Open Problems: Order of Magnitude

Question

If G is an n-vertex K_{4}-free graph with at least $n^{\lfloor 2 k / 3\rfloor-\epsilon} k$-MIS's, is it true that G has chromatic number $O_{k}(1)$?

If this, then one can reduce computing $m_{4}(n, k)$ to the k-partite setting.

Open Problems: Order of Magnitude

Question

If G is an n-vertex K_{4}-free graph with at least $n^{\lfloor 2 k / 3\rfloor-\epsilon} k$-MIS's, is it true that G has chromatic number $O_{k}(1)$?

If this, then one can reduce computing $m_{4}(n, k)$ to the k-partite setting. In particular this would give a positive answer to the previous problem, and it could probably be used to determine $m_{4}(n, 4)$ as well.

Open Problems: Order of Magnitude

Question

If G is an n-vertex K_{4}-free graph with at least $n^{\lfloor 2 k / 3\rfloor-\epsilon} k$-MIS's, is it true that G has chromatic number $O_{k}(1)$?

If this, then one can reduce computing $m_{4}(n, k)$ to the k-partite setting. In particular this would give a positive answer to the previous problem, and it could probably be used to determine $m_{4}(n, 4)$ as well.

Note that for K_{3}-free graphs it is easy to prove that if G has at least $1 k$-MIS, then $\chi(G) \leq k+1$

Open Problems: Asymptotics

In addition to order of magnitude, one could also ask for finer asymptotics values.

Question

Can one determine $m_{t}(n, 2)$ asymptotically for all t ?

Open Problems: Asymptotics

In addition to order of magnitude, one could also ask for finer asymptotics values.

Question

Can one determine $m_{t}(n, 2)$ asymptotically for all t ?
We can prove an upper bound of $\frac{1}{2}(t-1) n$ by a simple counting argument, and a lower bound of roughly $\frac{1}{4}(t-1) n$ by taking a comatching of size $2 n /(t-1)$ and replacing each vertex with a clique of size $(t-1) / 2$.

Open Problems: Asymptotics

Conjecture

$$
m_{3}(n, 3) \sim n
$$

Open Problems: Asymptotics

Conjecture

$$
m_{3}(n, 3) \sim n
$$

There are several constructions giving these asymptotics: a comatching together with a K_{2}, a $K_{n / 2, n / 2}$ minus any 2-factor, and a "blowup" construction of P_{2}.

Open Problems: Large k

Question

Can one say anything about $m_{3}(n, k)$ when $k=c n$ for some constant c ?

Open Problems: Large k

Question

Can one say anything about $m_{3}(n, k)$ when $k=c n$ for some constant c ?

Proposition

If n is even and $2 n / 5 \leq k \leq n / 2$, then

$$
m_{3}(n, k) \geq(25 / 32)^{k-n / 2} 2^{n / 2}
$$

Open Problems: Large k

Question

Can one say anything about $m_{3}(n, k)$ when $k=c n$ for some constant c ?

Proposition

If n is even and $2 n / 5 \leq k \leq n / 2$, then

$$
m_{3}(n, k) \geq(25 / 32)^{k-n / 2} 2^{n / 2}
$$

Construction: take $n-2 k$ copies of C_{5} and $5 k$ copies of K_{2}.

Open Problems: Large k

Question

Can one say anything about $m_{3}(n, k)$ when $k=c n$ for some constant c ?

Proposition

If n is even and $2 n / 5 \leq k \leq n / 2$, then

$$
m_{3}(n, k) \geq(25 / 32)^{k-n / 2} 2^{n / 2}
$$

Construction: take $n-2 k$ copies of C_{5} and $5 k$ copies of K_{2}. This is motivated by the Hujter-Tuza triangle-free construction which consists of a perfect matching with a C_{5} is n is odd, which suggests that C_{5} and K_{2} are the most "efficient" triangle-free components for finding MIS's.

Open Problems: Hypergraphs

Define $m_{t}^{r}(n, k)$ to be the maximum number of MIS's of size k in a K_{t}^{r}-free r-uniform hypergraph on n vertices.

Open Problems: Hypergraphs

Define $m_{t}^{r}(n, k)$ to be the maximum number of MIS's of size k in a K_{t}^{r}-free r-uniform hypergraph on n vertices. Somewhat surprisingly, we can completely determine the order of magnitude of $m_{t}^{r}(n, k)$ for $r \geq 3$.

Proposition (He, Nie, S. 2021)
For $n \geq 4$, we have

$$
m_{4}^{3}(n, 2)=n-1
$$

For any other set of parameters satisfying $r \geq 3, k \geq r-1$, and $t \geq r+1$,

$$
m_{t}^{r}(n, k)=\Theta_{k}\left(n^{k}\right)
$$

Open Problems: Hypergraphs

Construction: split vertex set into blocks V_{i} of size n / k, take your hyperedges to be any set using two vertices from some V_{i} and one from each of $V_{i+1}, \ldots, V_{i+r-2}$.

Open Problems: Hypergraphs

Question

Can one determine sharper asymptotic bounds for $m_{t}^{r}(n, k)$?

Open Problems: Hypergraphs

Question

Can one determine sharper asymptotic bounds for $m_{t}^{r}(n, k)$?

Question

How many MIS's (in general or of a given size) can an n-vertex r-uniform hypergraph have?

Open Problems: Hypergraphs

Question

Can one determine sharper asymptotic bounds for $m_{t}^{r}(n, k)$?

Question

How many MIS's (in general or of a given size) can an n-vertex r-uniform hypergraph have?

The best construction I know of is to take a disjoint union of cliques of size $2 r-1$.

Open Problems: Hypergraphs

Question

Can one determine sharper asymptotic bounds for $m_{t}^{r}(n, k)$?

Question

How many MIS's (in general or of a given size) can an n-vertex r-uniform hypergraph have?

The best construction I know of is to take a disjoint union of cliques of size $2 r-1$. Note that when $r=2$ this gives a disjoint union of triangles (which is tight).

The End

Thank You!

